

Roadrunner Technical Seminar Series

Overview of Modeling, Performance, and Results

March 19th 2008

Kevin J. Barker, Kei Davis, Adolfy Hoisie, Michael Lang, Scott Pakin, Jose Sancho-Pitarch

Presented by: Darren J. Kerbyson

Performance and Architecture Laboratory (PAL)

http://www.c3.lanl.gov/pal

Computer, Computational & Statistical Sciences Division

LA-UR 08-2037

Performance and Architecture Lab

- Novel techniques developed by PAL at Los Alamos
 - Methods are quasi-analytical
 - Models encapsulate performance of entire apps on full systems
- The workload considered is diverse (ASC, SC, DARPA, NSF)
- Analyze existing systems (or near-market systems)
 - Models validated on most large systems in the last decade
- Examine possible future systems
 - Design space exploration
- Recent work includes:
 - Roadrunner (>1Pf peak, Opteron + Cell-eDP @ Los Alamos)
 - IBM PERCS (DARPA HPCS, NSF track-1 @ NCSA ~2010)
 - Comparison of Red Storm, ASC Purple, BlueGene/L (SC'06)
 - Application modeling (ASC, DARPA, Office of Science)
- Models are our tools for performance analysis.
- Models are predictive, and highly accurate

PAL's performance analysis of Roadrunner

Aug '05: "Analysis of a two-level heterogeneous processing system",

(UCAS-2, Austin, TX March '06)

Sept '06: PAL RR report #1: Voltaire Switch Cabling Performance

Issues

Oct '06: PAL RR report #2: Application Specific Optimization of

Infiniband Networks

Jan '07: PAL RR report #3: Performance Acceptance Testing of

Roadrunner Phase 1 (Single CU testing)

July '07: PAL RR report #4: Early Performance Testing of the eDP

version of the Cell-BE

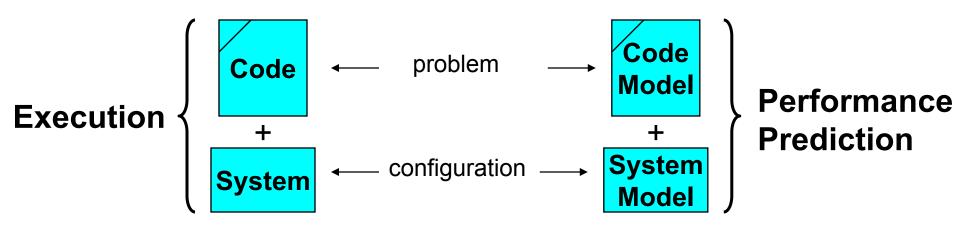
Sep '07: PAL RR report #5: A note on Application Performance of

the eDP version of the Cell

Oct '07: Presented performance analysis at RR assessments

On-going:

benchmarking and modeling of actual system, Cell-Messaging Layer,
 JumboMem ...


- Performance modeling methodology
- Architecture and performance parameters review
- Application performance
 - VPIC
 - SPaSM
 - Sweep3D
 - Milagro
- Performance prediction at scale
- Comparisons with other systems
- Note: Most of this analysis was undertaken in Aug/Sept '07
 - Many of the codes have progressed
 - System performance characteristics firming up
 - No measurement on actual hardware yet (imminent)

Question: How do we analyze the performance of a non-existent Machine?

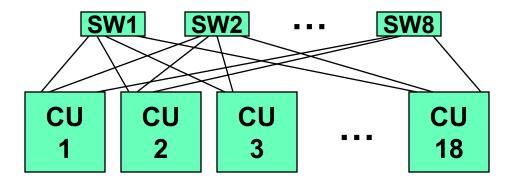
- Answer: Need a model.
- A model should encapsulate the understanding of:
 - What resources an application uses during execution
 - How often it does it
 - How its usage changes when scaling
 - How long the system takes in order to satisfy the resource requirements

Application centric view – what the application doing

PAL

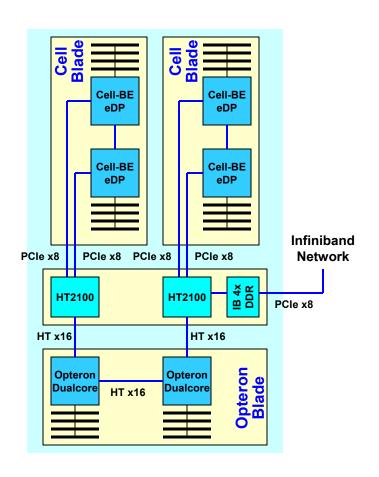
Why Performance Modeling?

Diversity of Applications


- 1) VPIC
 - Cell-centric, Opterons used only for Message relay
- 2) SPaSM
 - Hybrid, Both Cell and Opterons do useful work
- 3) Sweep3D
 - Cell-centric, Opterons used only for Message relay
- 4) Milagro
 - 2 versions
- For each:
 - Examine computation, communication, and possible overlap
 - Use input-decks of interest
 - Develop performance model using existing systems
 - Validate model on existing systems
 - Use models to predict for RR

Essential System Peak Performance Parameters

- System = 18 CU = 3240 triblades= 12960 (AMD cores + cell eDP)
- Interconnected using Infiniband 4x DDR
 - Full fat-tree within a CU
 - 2:1 (reduced) fat-tree between CUs



- Peak DP flops = 1.4Pf/s
- Each CU contains 180 compute-nodes, 12 I/O-nodes

Essential Node (Triblade) Peak Performance Parameters

- 4 Cell eDP = 4x (PPU + 8 SPUs)
 - Cell eDP = 104 Gflop/s (DP)= 208 Gflop/s (SP)
- 4 AMD cores
 - AMD = 3.6 Gflop/s (DP) / core
- Cell <-> AMD
 - Bandwidth = 2.0GB/s + 2.0GB/s
 - − Latency ~1.5µs
- AMD <-> AMD (inter-node)
 - Bandwidth = 2.0GB/s + 2.0GB/s
 - Latency ~ 1.5µs

Data Movement Performance Characteristics of RR: Input to Models

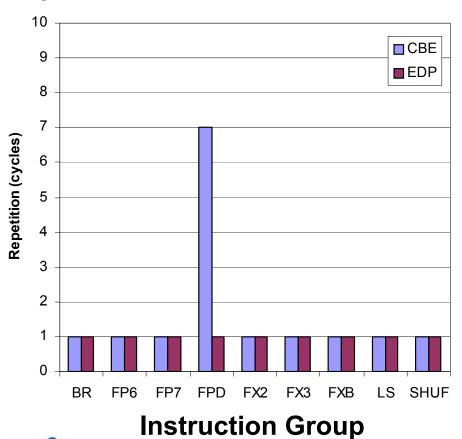
		Worst	Probable	Best
Single Cell -> Opteron (uni)	Latency	4.5us	3us	1.5us
	Bandwidth	1.2GB/s	1.4GB/s	1.6GB/s
All cells -> Opteron (uni)	Latency	5.5us	4us	2.5us
	Bandwidth	1.1GB/s	1.3GB/s	1.5GB/s
Single Cell -> Opteron (Bi)	Latency	5.5us	4us	3.5us
	Bandwidth	1GB/s	1.2GB/s	1.4GB/s
All cells -> Opteron (Bi)	Latency	6.5us	5us	3.5us
	Bandwidth	0.9GB/s	1.1GB/s	1.3GB/s
Infiniband (Uni)	Latency	2.2us	2.0us	1.8us
	Bandwidth	1.3GB/s	1.5GB/s	1.7GB/s
Infiniband (Bi)	Latency	2.7us	2.5us	2.3us
	Bandwidth	1.2GB/s	1.4GB/s	1.6GB/s

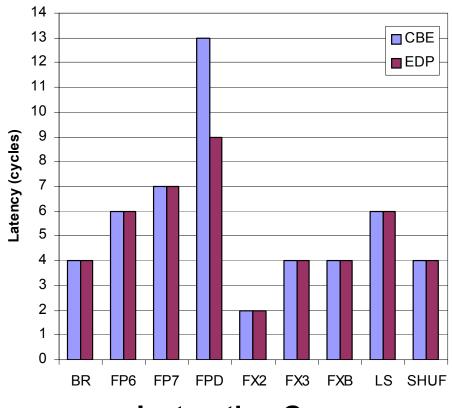
NB. Measurement on actual RR Triblades is imminent

Computation: Cell-BE eDP has much improved DP floating-point performance

- Cell-BE had low DP floating-point performance
- Cell-BE eDP increased peak DP by 7x, and uses DDR2 memory
- PAL tested eDP (July '07 and Sep '07):
 - summary of testing from Sep with two memory speeds (667MHz and 800MHz)

	eDP-667 vs. CBE	eDP-800 vs. CBE
VPIC	1.01x	1.01x
CellMD	1.50x	1.50x
Hybrid-IMC	1.50x	1.50x
PAL-Sweep3D	1.72x	1.77x


DP available today in the IBM on-Demand center

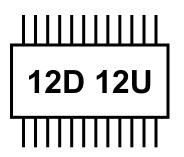


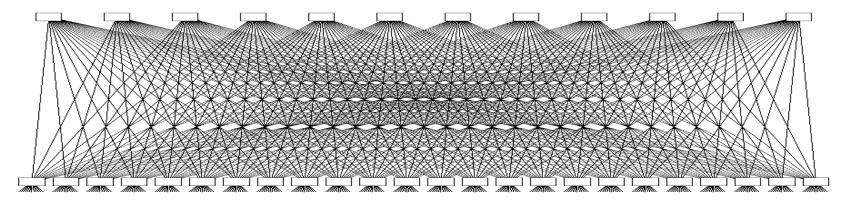
Cell-BE eDP vs. Cell-BE instruction costs

Cycles between instruction issues

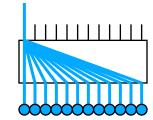
Instruction pipeline latency

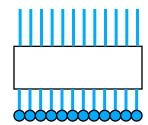
Instruction Group




Infiniband Network Characteristics

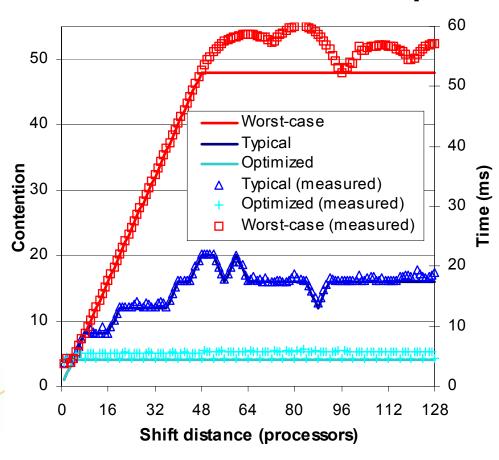
 Building block is a 24-port x-bar switch, e.g.





Tree networks, e.g. 2-level, 288 port switch:

 Routing table in each switch determines output port for a message based on destination



Optimization produced increased network performance

Use logical-shift communication pattern

$$-P_{i} -> P_{i} + d$$
 where $d = 1..128$

Maximum contention plotted (1024 PE job)

 Worst-case: max of 48 (# PEs attached to 1 switch)

- Typical: contention generally increases with shift distance
- Optimized: max of 4 (bottleneck is node-size, PEs)

PAL Application 1: VPIC

- Plasma Particle-in-Cell,
 - Cell-centric on Roadrunner, Opterons used for message relay
- 3-D volume containing ions and electrons
 - Split into Voxels
 - Each voxel contains an ~equal number of ions+electrons
 - ions and electrons can move
 - » Results in inter-processor communication
- Parallel Decomposition: in 1-D, 2-D or 3-D
 - Weak-scaling: constant work per processor
- Two main model components
 - Time to process a single ion/electron
 - » found to be same for both particle species
 - size, pattern and number of communications per iteration
 - » 1-D, 2-D or 3-D pattern depending on decomposition

PAL VPIC: Model Input Parameters

Input-deck	Hot
Parallel Decomposition	3D
Voxels / processor	16x16x16 (= 4K)
Particles / Voxel	512
# Particle species	2
Total # Particles / processor	4 M
Particle Size (for communications)	44B

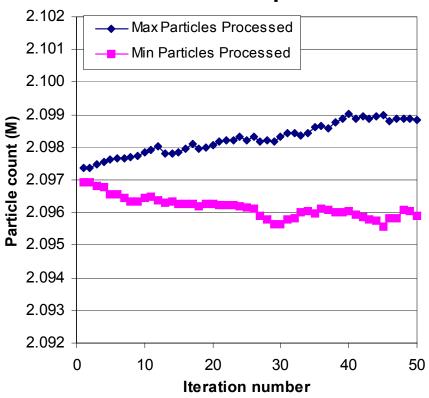
Compute performance per particle

	Cell-eDP only	Opteron only
Compute per Particle	13ns	76ns

Note: Compute time is a composite of all stages

- On the Cell: main component (particle-push) done on all SPEs
- Some steps including sorting currently on the PPE

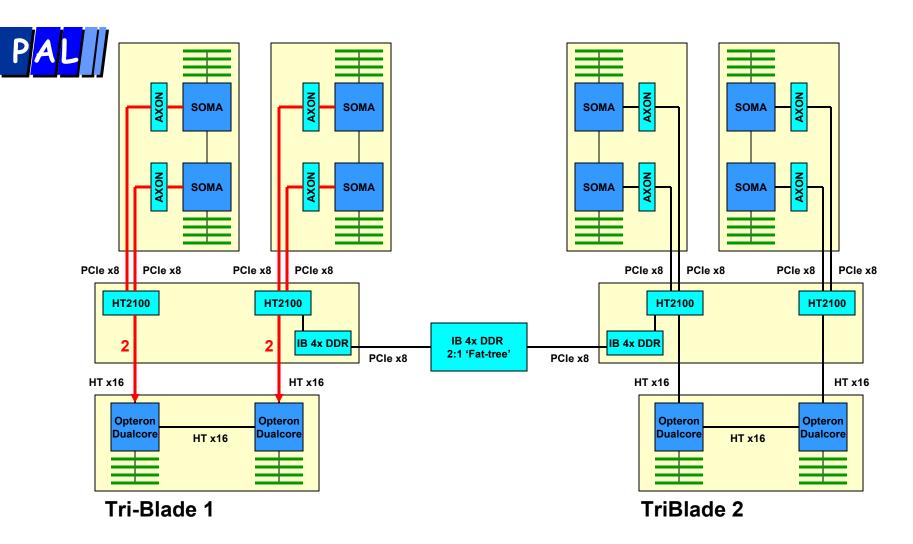
Electron sorting every 50 iterations, and ion sorting every 100 iterations


PAU VPIC: Compute Considerations

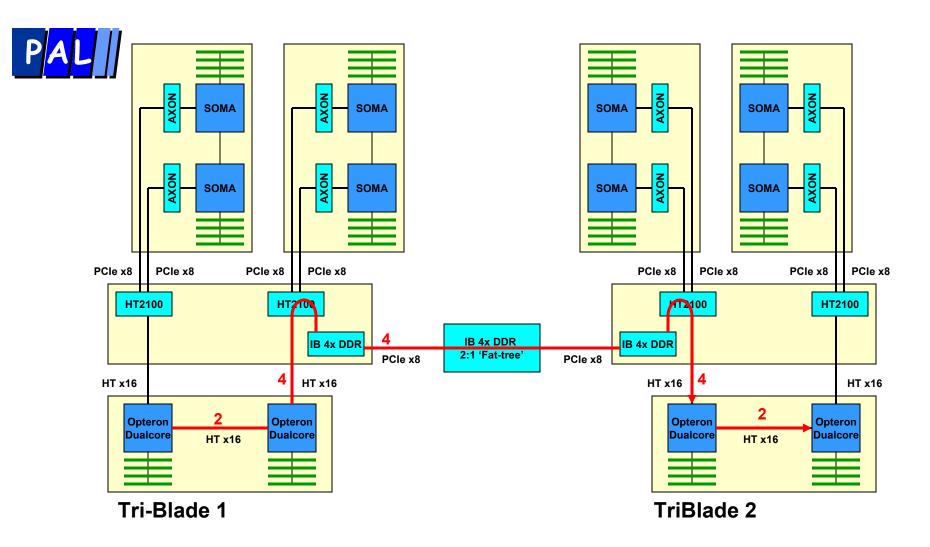
- # particles per processor can vary over iterations
 - Input deck dependent

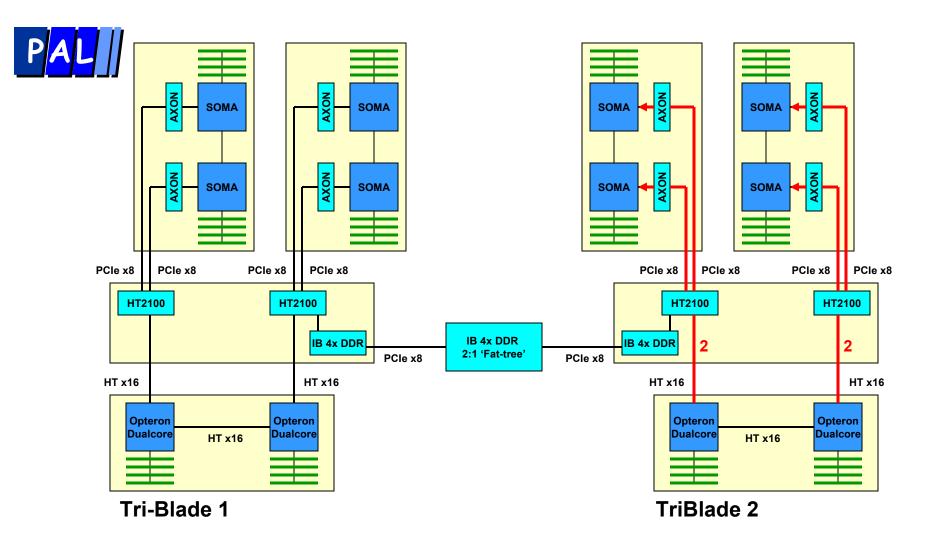
Net Particle Movement

Particles / processor

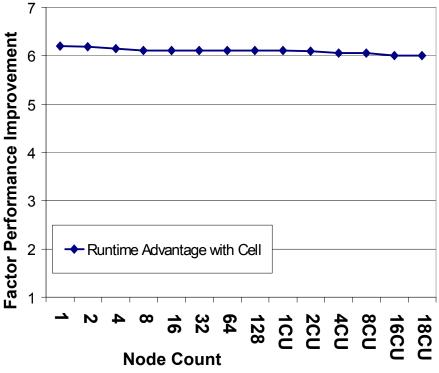


VPIC: Parallel Aspects


- Assumed linear MPI rank mapping to nodes
 - Rank 0-3 on first triblade, Rank 4-7 on second etc.
- Communications take place in each of 6 directions:
 - Particle transfer:
 - » One message per neighbor per iteration per species
 - » 4-10KB (ion movement), ~20-45KB (electron movement)
 - Remaining messages are small: 4B
 - Total of 23 messages per neighbor per iteration
- Model initially developed for non-accelerated VPIC
 - Validated with high accuracy on 1024core AMD IB cluster
- Refined for hybrid implementation with message relay
 - Model accuracy within 5% on available AAIS hardware (8 blades)


- → 1) Cells (TriB 1) -> Opterons (TriB 1)
 - 2) Opterons (TriB 1) -> Opterons (TriB 2)
 - 3) Opterons (TriB 2) -> Cells (TriB 2)

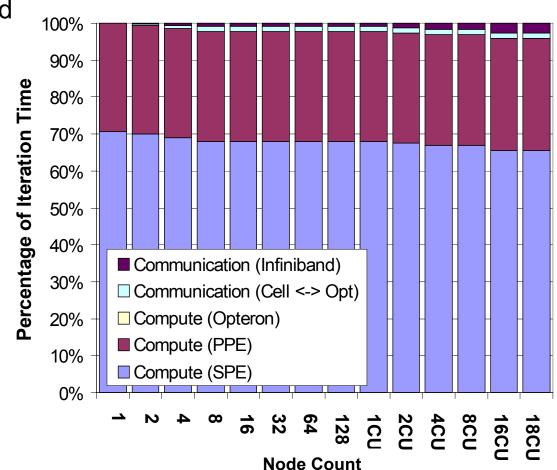
- 1) Cells (TriB 1) -> Opterons (TriB 1)
- 2) Opterons (TriB 1) -> Opterons (TriB 2)
- 3) Opterons (TriB 2) -> Cells (TriB 2)


- 1) Cells (TriB 1) -> Opterons (TriB 1)
- 2) Opterons (TriB 1) -> Opterons (TriB 2)
- 3) Opterons (TriB 2) -> Cells (TriB 2)

VPIC: RR Performance predictions

Runtime on Opterons / Runtime on accelerated RR

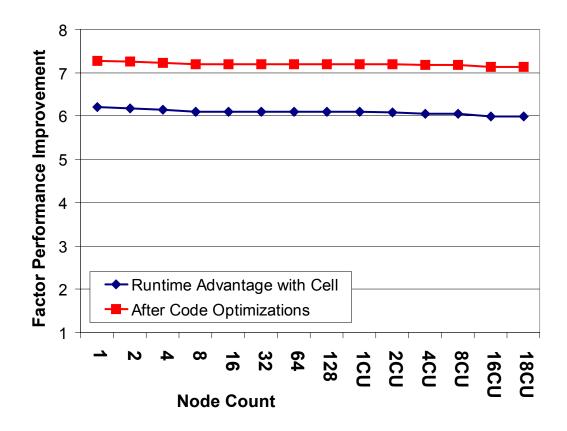
- Very Good scaling expected
- With current code, expect a factor of ~6x better performance using Cell



PAL VPIC: Profiling

• Where is the time being spent?

- Remains compute bound
- ~65% SPU
- ~31% PPU
- ~1 Cell <-> Opteron
- ~3% Infiniband



VPIC: Possible Code Improvements

- Between now and RR deployment expect:
 - Migration of particle sort from SPU to PPU (x0.5)

Application 2: SPaSM

Single species of atoms arranged in 3-D structure

- uniform spatial distribution (crystalline structure, possible voids)
- uniform, very short range interactions

Three types of cell!

- Unit cell defining the atom structure
- Computation cell defining a 'unit' of work
- Processor cell doing a lot of the work!

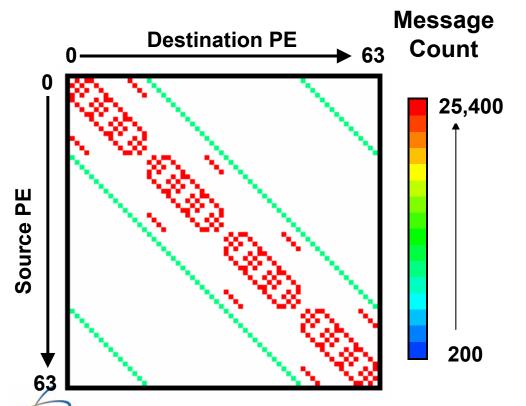
3-D structure partitioned in 3-D, 26 neighbors

computational cells are carefully ordered to minimize communications

Approach:

- Understand and model existing SPaSM code
- Validate model on existing cluster hardware
- Predict performance on Roadrunner

Existing code


very different performance characteristics to Roadrunner code
 mos lots of small messages, one per boundary computation-cell

SPaSM: Communication Pattern

- Example: Communication summary (one iteration)
 - 4x4x4 processors, 512x512x512 unit-cells
 - Does not show temporal information

Diagonals indicate:

- ±X, ±Y, ±Z comm. directions
- Also cycle boundaries
- Each diagonal is a logical "shift" of a certain distance
- Detailed analysis reveals:
 - #messages/PE = 120K
 - Half are of size 56B
 - Other half range in size from 4x536B to 14x536B

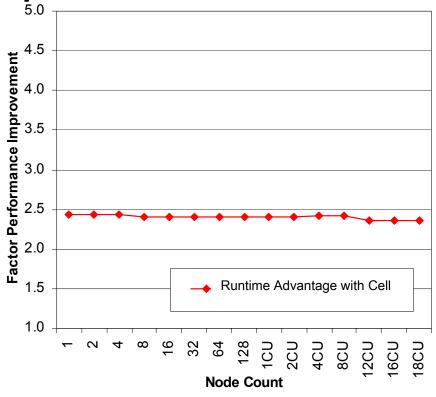
SPaSM Workload Characteristics (Sep'07)

- Hybrid accelerator Approach
- Acceleration of major part of processing
 - Accelerated 90% of original microprocessor cycles
- Processing flow (an iteration):
 - Prepare data on AMD for Cell
 - Transfer data volume to Cell (~230MB)
 - Process data on Cell
 - Transfer data volume back to AMD (~230MB)
 - Post-process on AMD
 - Update Particles on AMD
 - Exchange boundaries between AMDs (~250MB total in 6 messages)

SPaSM: Model Input Parameters

- Weak Scaling: Problem size fixed at 1.5M atoms per processor
 - 64x64x64 unit-cells x 6 particles/unit-cell)
- Iterative
 - Compute-time per iteration varies very little (max. of a few percent)

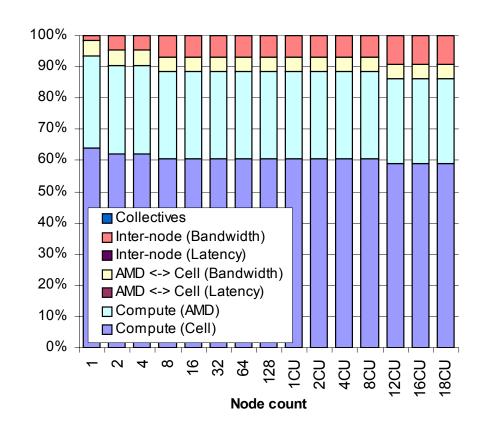
Input-deck	R2
Unit cells / processor	64x64x64
Computational cells / processor	46x46x69
Av. Atoms / c-cell	10.8
Skin Depth	2
Size of particle (Node <-> Node)	590B
Size of particle (Cell <-> Opteron)	132B
Compute per atom (Opteron component)	1.23µs
Compute per atom (Cell-eDP component)	2.7µs



SPaSM: RR Performance predictions

Runtime on Opterons / Runtime on accelerated RR

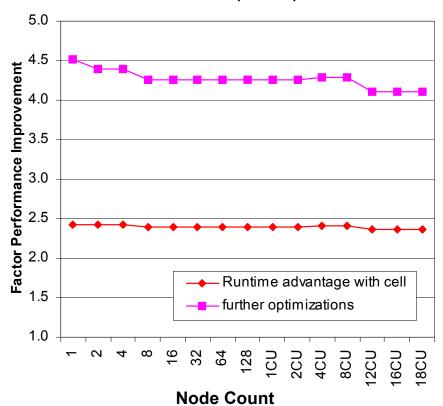
- Very Good scaling expected
- With Sep'07 code, expected a factor of ~2.4x better performance using the Cell



SPaSM: Profiling

• Where is the time being spent?

- Remains compute bound
- ~60% time on the Cell
- ~26% time on Opteron
- ~9% in Infiniband
- ~5% in Cell <-> Opteron



SPaSM: Possible code improvements

Between now and RR deployment expect:

- Improvement of cell computation (reduction of neighbors) (x0.6)
- Improvement on AMD side (x0.3)

Application 3: Sweep3D Input Parameters

- PAL optimized version of Sweep3D for Cell
- Uses domain decomposition (in 2-D)
 - Each SPE processes a defined subgrid
 - 32 subgrids per triblade
- A key parameter is the computational block size
 - Angles per block fixed at 6 (for high SPE compute efficiency)
 - K-planes per block is variable (decreases with scale for high parallel efficiency)

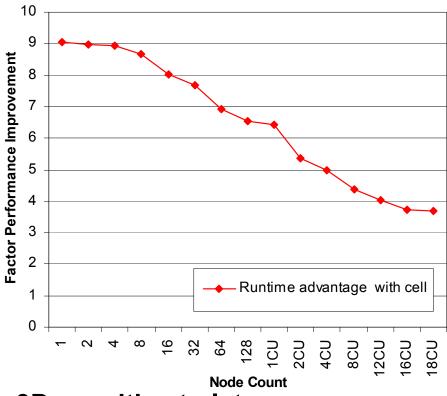
Sub-grid size per SPE (I x J x K)	5x5x400
K-planes per block	{1 50}
Angles per block	6
Number of cycles	10
Grind time per grid-point per angle (eDP) NB variable depending on block-size	{29 47} ns
Boundary surface (Bytes per grid-point per angle)	8

Wavefront Parallelization

- Pipeline characteristic whose length increases with scale
- 3-D grid is typically parallelized in only 2-D
 - Blocking used to increase parallel efficiency (c.f. blocking for cache)

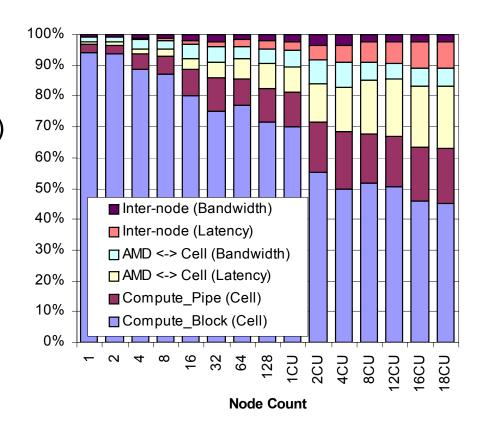
4x4 processors (top-view) Sub-grid (1PE) Ax4 processors (top-view) Ax5 processors (top-view) Ax6 processors (top-view) Ax7 processors (top-view) Ax7 processors (top-view)

Sweep3D Workload Characteristics


- Mapping of Sweep3D to the Triblade
 - Processing
 - » Cell SPU: main sweep processing
 - » Cell PPU: DMA and inter-SPE communication management
 - » Opteron: No computation
 - Message Passing: Originate on the Cell and relayed through Opterons
- Message characteristics
 - Fine-grained communications:
 - » 2 messages sent per SPE per block per cycle
 - » Sizes depend on block size, 240B -> 4,800B (typical)
- At small-scale performance is compute-bound
- At large-scale performance is impacted by both message latency and increased pipeline length
- Performance Model validated on all large-scale systems
- Model adapted to reflect additional Cell->AMD communications

Sweep3D: RR Performance predictions

Runtime on the base cluster / Runtime on accelerated RR


- Sweep3D sensitive to latency
 - Increased due to Cell <-> Opteron
 - But some communication can be overlapped
- Performance advantage of accelerator reduces with scale

Sweep3D: Profiling

- Where is the time being spent?
 - ~63% Compute on Cell
 - ~20% Latency (Cell <-> AMD)
 - ~5% Bandwidth (Cell <-> AMD)
 - ~8% Latency (Infiniband)
 - ~3% Bandwidth (Infiniband)
- Pipeline unavoidable
- Latency dominates communication (Cell <-> AMD is major component)

Comparison to ASCI Q

- ASCI Q was the largest machine in use at LANL until recently
- 4-processor (Alpha) EV68 nodes interconnected by Quadrics QSNet-1.
- Peak speed of 20 Tflops
- Comparison made to insert a "historical" perspective in the analysis

Runtime improvement of RR vs. ASC Q (equal node-count basis)

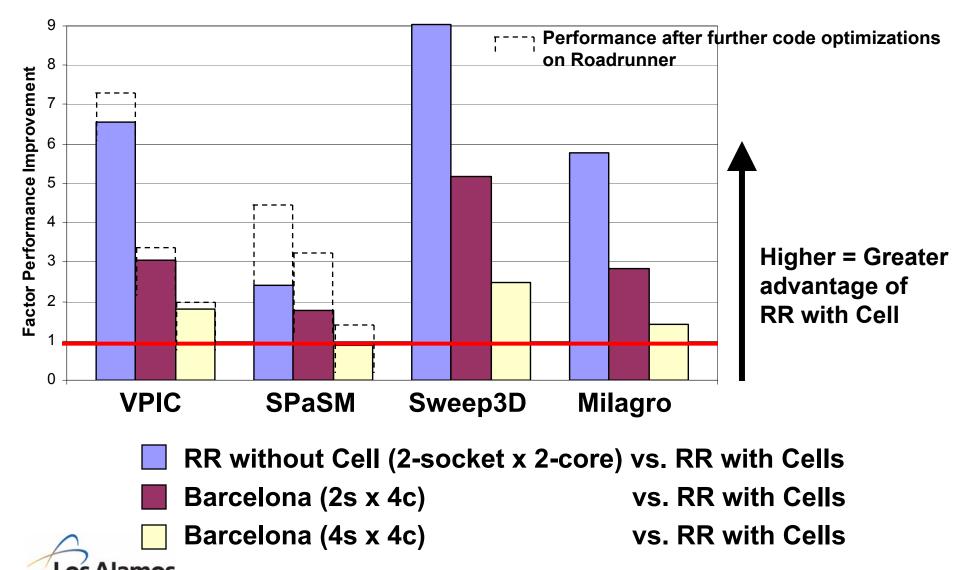
	1 Node	At Scale
VPIC	23	31 (800 Nodes)
SPASM	4.5	5 (256 Nodes)
Sweep3D	16	15 (810 Nodes)
Milagro	9	12 (800 Nodes)

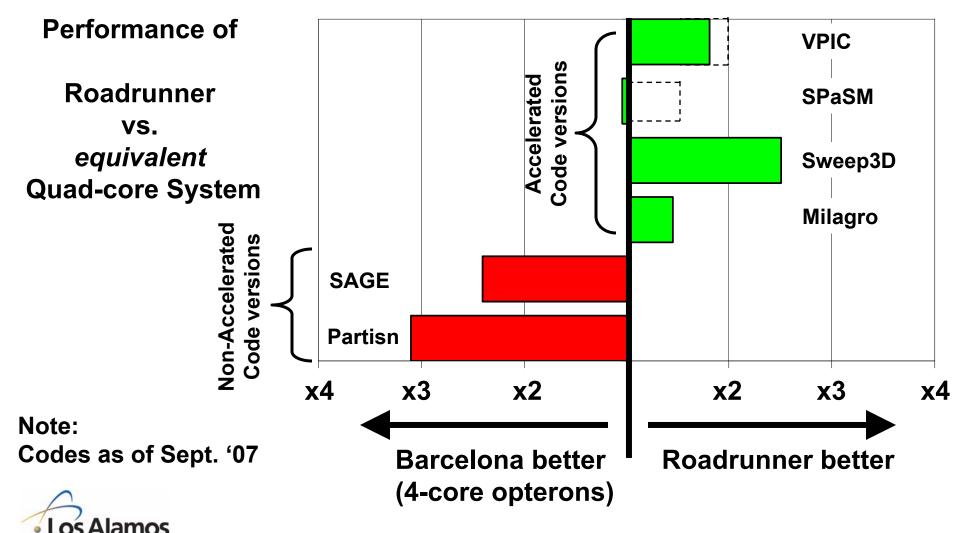
Roadrunner Performance Relative to other (Hypothetical) Systems

Nodes used for comparison:

- Triblade (4x cell-eDP, and AMD 2-socket x 2-core) [Roadrunner]
- AMD Barcelona 2-socket x 4-core (2GHz)
- AMD Barcelona 4-socket x 4-core (2GHz)

Fixed problem size per node


when comparing node performance



Single Node Performance Comparison

Results: Roadrunner has a significant performance advantage

- Analyzed RR performance under a realistic application workload of interest through predictive modeling
- VPIC, SPaSM and Sweep3D scale well on RR
- VPIC, SPaSM, Sweep3D exhibit high performance gains over the RR base cluster
 - in the range of 2.5x-7x
- Significant performance improvements over ASC Q
- Accelerated applications under consideration are faster on RR than on hypothetical systems using state-of-the-art multicore nodes

Achievements

- Performance analysis and predictions at scale
- Optimized Network routing for improved performance
- Cell Messaging Layer (CML)
 - Developed from PAL's implementation of Sweep3D
 - Each SPE has a separate MPI rank in CML and can communication with any other SPE in the system
 - Open sourced, peer reviewed paper at IPDPS, April 2008

JumboMem

- Enables a single process to use memory throughout a cluster
- Transparent to an application
- For RR the Cells can use the Opteron memory (or vice-versa)
 [under-development for the triblades]

